Patient-specific multi-omics models and the application in personalized combination therapy


Future Oncology, our partnered journal, has recently published a review evaluating different multi-omics technologies, including machine learning and deep-learning data analysis tools, and their application in combination therapy.

Read the full report here

Abstract

The rapid advancement of high-throughput technologies and sharp decrease in cost have opened up the possibility to generate large amount of multi-omics data on an individual basis. The development of high-throughput -omics, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiomics, enables the application of multi-omics technologies in the clinical settings. Combination therapy, defined as disease treatment with two or more drugs to achieve efficacy with lower doses or lower drug toxicity, is the basis for the care of diseases like cancer. Patient-specific multi-omics data integration can help the identification and development of combination therapies. In this review, we provide an overview of different -omics platforms, and discuss the methods for multi-omics, high-throughput, data integration, personalized combination therapy.

Read the full report here